428 research outputs found

    Multi-gene panel testing and association analysis in Cypriot breast cancer cases and controls

    Get PDF
    Introduction: It is estimated that around 5% of breast cancer cases carry pathogenic variants in established breast cancer susceptibility genes. However, the underlying prevalence and gene-specific population risk estimates in Cyprus are currently unknown.Methods: We performed sequencing on a population-based case-control study of 990 breast cancer cases and 1094 controls from Cyprus using the BRIDGES sequencing panel. Analyses were conducted separately for protein-truncating and rare missense variants.Results: Protein-truncating variants in established breast cancer susceptibility genes were detected in 3.54% of cases and 0.37% of controls. Protein-truncating variants in BRCA2 and ATM were associated with a high risk of breast cancer, whereas PTVs in BRCA1 and PALB2 were associated with a high risk of estrogen receptor (ER)-negative disease. Among participants with a family history of breast cancer, PTVs in ATM, BRCA2, BRCA1, PALB2 and RAD50 were associated with an increased risk of breast cancer. Furthermore, an additional 19.70% of cases and 17.18% of controls had at least one rare missense variant in established breast cancer susceptibility genes. For BRCA1 and PALB2, rare missense variants were associated with an increased risk of overall and triple-negative breast cancer, respectively. Rare missense variants in BRCA1, ATM, CHEK2 and PALB2 domains, were associated with increased risk of disease subtypes.Conclusion: This study provides population-based prevalence and gene-specific risk estimates for protein-truncating and rare missense variants. These results may have important clinical implications for women who undergo genetic testing and be pivotal for a substantial proportion of breast cancer patients in Cyprus

    Polyphenolics, glucosinolates and isothiocyanates profiling of aerial parts of \u3ci\u3eNasturtium officinale\u3c/i\u3e (Watercress)

    Get PDF
    Watercress (Nasturtium officinale) is a rich source of secondary metabolites with disease-preventing and/or health-promoting properties. Herein, we have utilized extraction procedures to isolate fractions of polyphenols, glucosinolates and isothiocyanates to determine their identification, and quantification. In doing so, we have utilized reproducible analytical methodologies based on liquid chromatography with tandem mass spectrometry by either positive or negative ion mode. Due to the instability and volatility of isothiocyanates, we followed an ammonia derivatization protocol which converts them into respective ionizable thiourea derivatives. The analytes’ content distribution map was created on watercress flowers, leaves and stems. We have demonstrated that watercress contains significantly higher levels of gluconasturtiin, phenethyl isothiocyanate, quercetin-3-O-rutinoside and isorhamnetin, among others, with their content decreasing from flowers (82.11 ± 0.63, 273.89 ± 0.88, 1459.30 ± 12.95 and 289.40 ± 1.37 ng/g of dry extract respectively) to leaves (32.25 ± 0.74, 125.02 ± 0.52, 1197.86 ± 4.24 and 196.47 ± 3.65 ng/g of det extract respectively) to stems (9.20 ± 0.11, 64.7 ± 0.9, 41.02 ± 0.18, 65.67 ± 0.84 ng/g of dry extract respectivbely). Pearson’s correlation analysis has shown that the content of isothiocyanates doesn’t depend only on the bioconversion of individual glucosinolates but also on other glucosinolates of the same group. Overall, we have provided comprehensive analytical data of the major watercress metabolites thereby providing an opportunity to exploit different parts of watercress for potential therapeutic applications

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    The Relationship between Common Genetic Markers of Breast Cancer Risk and Chemotherapy-Induced Toxicity: A Case-Control Study.

    Get PDF
    Ninety-four common genetic variants are confirmed to be associated with breast cancer. This study tested the hypothesis that breast cancer susceptibility variants may also be associated with chemotherapy-induced toxicity through shared mechanistic pathways such as DNA damage response, an association that, to our knowledge, has not been previously investigated. The study included breast cancer patients who received neoadjuvant/adjuvant chemotherapy from the Pharmacogenetic SNPs (PGSNPS) study. For each patient, a breast cancer polygenic risk score was created from the 94 breast cancer risk variants, all of which were genotyped or successfully imputed in PGSNPS. Logistic regression was performed to test the association with two clinically important toxicities: taxane- related neuropathy (n = 1279) and chemotherapy-induced neutropenia (n = 1676). This study was well powered (≥96%) to detect associations between polygenic risk score and chemotherapy toxicity. Patients with high breast cancer risk scores experienced less neutropenia compared to those with low risk scores (adjusted p-value = 0.06). Exploratory functional pathway analysis was performed and no functional pathways driving this trend were identified. Polygenic risk was not associated with taxane neuropathy (adjusted p-value = 0.48). These results suggest that breast cancer patients with high genetic risk of breast cancer, conferred by common variants, can safely receive standard chemotherapy without increased risk of taxane-related sensory neuropathy or chemotherapy-induced neutropenia and may experience less neutropenia. As neutropenia has previously been associated with improved survival and may reflect drug efficacy, these patients may be less likely to benefit from standard chemotherapy treatment.This work was supported by 1) PGSNPS: project and fellowship grants received by Jean Abraham from Cancer Research UK, C507/A6306 and C10097/A7484, http://www.cancerresearchuk.org/; 2) Neo-tAnGo funding: Cancer Research UK Research Grant (C57/A4180) and an additional unrestricted educational grant from Eli Lilly Limited who also provided free Gemzar®/gemcitabine; Bristol Myers Squibb Ltd provided free Taxol®/paclitaxel from January 2005 to June 2006 [EudraCT No: 2004-002356-34, ISRCTN 78234870, ClinicalTrials.gov number: NCT00070278]; 3) tAnGo funding: Unrestricted educational grants and free drug from Eli Lilly (GemzarTM) and Bristol Myers Squibb (TaxolTM); and 4) NEAT/BR9601 funding: Project grant from Cancer Research UK (formerly Cancer Research Campaign) 1996-2003: Unrestricted educational grant Pfizer (formerly Pharmacia). HME, JEA, and CC acknowledge funding from the NIHR Cambridge Biomedical Research Centre. JEA acknowledges funding from Addenbrookes Charitable Trust. LD acknowledges funding from Medical Research Council.This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pone.015898

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer

    Get PDF
    Background: Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers. Methods: We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium. Results: We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR)=0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P=6.5×10-5). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR=0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P=2.5×10-7), and positively associated with ovarian cancer (OR=1.35; 95% CI: 1.05, 1.72; P=0.017), lung cancer (OR=1.27; 95% CI: 1.09, 1.49; P=2.9×10-3) and colorectal cancer (OR=1.39; 95% CI: 1.06, 1.82, P=0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression. Conclusions: Findings from this study provide additional understandings of the complex relationship between adiposity and cancer risks. Our results for breast and lung cancer are particularly interesting, given previous reports of effect heterogeneity by menopausal status and smoking status.</p
    • …
    corecore